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Abstract—This paper presents new wall functions of velocity and temperature for natural convection along

vertical plates based on dimensional analysis and experimental data. Because only fluid properties and

local parameters are included, the proposed wall functions are suitable for numerical simulation and are

expected to be also valid in non-isothermal flows in cavities. Moreover, a certain analogy of length, velocity,
and temperature scales between natural and forced convection has been found.

1. INTRODUCTION

NATURAL convection and buoyancy induced flows
abound in nature and in our living environment. In the
past 20 years computational fluid dynamics (CFD) in
natural convection has made considerable progress.
However, numerical methods are still not well enough
established to model it. While the wall functions, the
distributions near the wall, have been widely used in
forced convection, proper wall functions for natural
convection have still not been found. A very fine grid
has to be used in the near-wall region in natural con-
vection. It was recommended that at least 10 grid lines
[1]. or even 20 to 30 [2] arc required in the near-wall
region, which significantly increases the computing
cost. especially in 3-D cases. It is significant to find
new wall functions which are suitable for natural con-
vection.

Contributions have been made to the measurement
and analysis of turbulent natural convection along
heated vertical surfaces. Cheesewright [3] reported
his experimental data in the form of 6 = f(x), and
u/(gB(Tu—To)x)** = f(n), with 5=y Gr}'/x. He
mentioned that, taking»n = y Gr 2*/x would give much
better correlation over the inner part of the boundary
layer but would give the wrong behaviour near the
outer layer edge. Fujii et al. [4] proposed to use
{ =y Nu/x as the length parameter, which was
employed later by Miyamoto and Okayama [5] for
correlation of the temperature and velocity profiles of
the whole boundary layer, and by Tsuji and Nagano
[6] and Henkes [7] for correlation of temperature in
the inner layer. George and Capp [8] divided the
boundary layer into two sublayers—inner and outer
sublayers, of which the inner one is a constant heat
flux sublayer and by means of similarity analysis, they
obtained the 1/3-power-law wall functions for the
buoyant sublayer.

Cheescwright and Mirzai [9] emphasized that, the

correlation of temperature data is insensitive to the
wall shear stress but the velocity data is correlated by
splitting it into a part dependent on the shear stress
and a part directly dependent on the temperature field.
Based on experiments, Tsuji and Nagano [6] derived
their own wall functions, in which the maximum vel-
ocity was taken as velocity scale and the boundary
thickness as length scale for the outer layer, and they
mentioned the difficulties in finding the proper simi-
larity variable for the profiles of mean velocity, mean
temperature, and intensities of velocity and tempera-
ture fluctuations in the outer layer.

Henkes [7], to complement experimental data, cal-
culated natural convection boundary layers up to
Ra = 107 with k—¢ turbulence models. From the cal-
culated results, he obtained the wall functions, in
which he used the same scales in the outer layer as
Tsuji and Nagano.

Moser [10] reviewed the methods and probiems in
numerical simulation of air flows in buildings, and
emphasized the need for proper wall functions for
natural and mixed convection.

In this paper, a new correlation, based on dimen-
sional analysis [11] and the experimental data, is dis-
cussed. And new wall functions for turbulent natural
convection along vertical plates are presented.

2. WALL FUNCTIONS

The conservation equations for momentum and
energy in boundary layers along vertical smooth
plates can be expressed by :
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NOMENCLATURE

d, b, ¢, d dimensionless constant

C, specific heat at constant pressure
Bkg 'K ]

g gravitational acceleration [ms™7]

dimensionless strcamwise velocity, u;u,
dimensionless streamwise velocity, u*R*
X distance in streamwisc direction [m]

¥ distance normal to the wall [m]
)

1

Gr,  x-Grashof number. x*¢B(T, — T,)/v" * local Reynolds number. vu, /v
Nu,  x-Nusselt number. xq,/(2pC (T, —T,)) ¥ dimenstonless distance normal to the
Pr Prandtl number, v/u wall, yu, /o
R dimensionless parameter, 4, /u, y**  dimensionless distance normal to the
Yy wall heat flux [Wm 7] wall, y*RY
T local mean temperature [K] p¥*  dimensionless distance for the inner
T, heat flux temperature, (¢s/gfa(pC,)")"* sublayer, y*R*
K] y¥*  dimensionless distance for the outer
T, temperature of the surface [K] sublayer, y*R".
T, temperature of the outside of boundary
layer [K] Greek symbols
T+  dimensionless temperature, o thermal diffusivity fm=s ']
(T, —TpC,uly, ) gas expansion coefficient [K ']
T* dimensionless temperature, (7,,—7T)/T, 0 dimensionless tcmperature,
7**  dimensionless temperature, 7*R? (T—TONT,— T,
u mean velocity component in the / heat conductivity [Wm 'K ')
streamwise direction [ms™'] i molecular (or dynamic) viscosity
u, a velocity scale based on heat flux, [Nsm 7]
(gBoq./(pC)) " [ms ] v kinematic viscosity [m*s ']
u, friction velocity, (z,./p)"* [ms '] density of fluid {kgm
u* dimensionless streamwise velocity, u/u, Ty wall shear stress [Pa).
Velocity, u, v, and temperature, T, depend on the Ty .
position, (x, }), the boundary condition, (7T, —T,), ) =S T =To.gh 2v) (8)

and the fluid properties (gf, 2. and v), i.e.,
u=flx, v, Ty —Ty.gp,o.v) (3)
T.—T=/(x.3T.—Tygp2v). 4)

Other dependent variables are the wall heat flux, ¢,
and the wall shear stress, t,,. All experimental data
about those may be cast into:

q\’\"Y

Nu, = -
pCpa(Tw _TU)

= f(Gr. Pr) )

e~ f(Gr.. Pr) ©)
where u, is the velocity scale, for which as proposed
by Tsuji and Nagano [6, 12] u, = [gB(T, ~ To)v]""
and by Cheesewright and Mirzat [9]
[gB(T— To)x]" 2

The profiles (3) and (4) are not in a form suitable
for wall functions in a numerical finite-volume method
because the streamwise distance, x, still appears. The
idea now is to use the empirical information in
expressions (5) and (6) to eliminate x and (7,,—T,)
in (3) and (4). Equations (5) and (6) can be rewritten
as the dimensional equations:

u, —

5
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P

which are equivalent to:

T 4w
X = . Lgf v 9
X /(p p(pyﬁ1‘> 9
T,—T, =.f’<f“’ B gpa, v). (10)
p pC,

Substituting equations (9) and (10) into equations (3)
and (4), we have:

> T\V qW \
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P

(12)

which can be considered as general velocity and tem-
perature profiles in boundary layers along vertical
plates. Next, we will discuss how to deduce the wall
functions for velocity and temperature by means of
dimensional analysis.

2.1. Temperature wall function

From the seven variables in equation (12), only four
independent dimensionless parameters can be formed,
we choose:
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v

Pr=- (13)

(14
o = 2 (15)

(16)

where :

B 7 ‘JLiy 1,4
Ta= <gﬁa<pcp>3> :

which we call heat flux temperature ;

U, = 9P\, and u
q = oC, s i

which is known as “friction velocity’.
Equation (12) can be therefore written as:

J(T*, y*, R, Pr) =0.

l
TN
[ £
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The dimensionless equation (17) should represent the
wall function for temperature in non-dimensional
terms, and hence, the temperature profile depends on
two parameters, R and Pr. The actual shape of the
function can be determined by comparison with
measured profiles in three steps:

(1) For the case restricted to air only, the Prandtl
number is really a constant, Pr = 0.71.

(2) The experimentally observed dependence on R
is accounted for by suitable transformation of the y-
and T-coordinates using powers of R as equations
(19) and (20).

(3) The profile in transformed coordinates is finally
curve-fitted to measured data.

We expect the following equation to correlate tem-
perature profiles well :

T** = f(y**, Pr) (18)

where
T** — T*Re (19)
PEE =R (20)

Ifa=h= —1,then T** = T*, y*¥* = Pry*, equa-
tion (18) becomes:

T =f(y", Pr) 2n

which is the temperature wall function for forced con-
vection.t

For natural convection, we have to determine the
values of @ and b based on experimental data. Tsuji

T Itis possible that equation (18) contains the wall function
for forced convection because the temperature in forced con-
vection can also be expressed by equation (12).
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and Nagano [12] systematically presented their exper-
imental data of turbulent natural convection of air
along a vertical plate with constant wall temperature
in the range of 1.55 x 10" < Gr, < 1.80x 10'". It can
be seen from Fig. 1 that T* = f(y*), or equation (18)
with @ = b = 0, correlate the experimental data well.
By means of curve-fitting, as shown in Fig. 2, we
obtain temperature wall function as follows:

T* =y* y* 1 (22)

T* = 1+1.36Iny*—0.135In3* 1 < y* < 100
(23)
T*=44 y*>100. (24)

The available experimental data of Cheesewright and
Mirzai [9] (Gr, = 3.94x 10'°, 2.05 x 10'%), and Cheese-
wright [3] (Gr, = 5.72x 10" for air flows along
vertical plates with constant wall temperature, and
Miyamoto et al. [13] (Gr, = 2.37x 10", 1.26 x 10",
1.90 x 10") for air flows along vertical plates with
constant wall heat flux are also shown in Fig. 2. The
function agrees with the experimental data well and
is valid in the situations of both constant wall tem-
perature and constant wall heat flux.

According to the definitions of T* and y*, equation
(22) can be rewritten as:

_MT,—T)
==

G <l (25)
which is identical to the expression of the temperature
profile in the laminar sublayer and agrees with the
comment of Tsuji and Nagano [6].

At the outer edge of the boundary layer the tem-
perature becomes T = T, and the dimensionless tem-

perature approaches T, 1.e.

T = To—To (PLZGVX)A.

T Nu? (26)

q

According to the following relationship proposed by
Tsuji and Nagano [12]:

Nu, = 0.11Gr? 27

we have:

Prl 1/4
T = (671‘) =44 for Pr=0.71 (28)
which is consistent with equation (24).

The agreement of the correlation of temperature
profiles with measurement both in forced and natural
convection with appropriate values of the exponents
a and b confirms that equation (18) is a proper for-
mula for the temperature wall function.

2.2. Velocity wall function

Similarly, we can determine four independent
dimensionless parameters from equation (11). Then
equation (11) can be changed into dimensionless
form, i.e.,
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5
T
4 F
3
3k
2F .
Tsuji & Nagano [12] Gr, = 1.80E11
L —&— Tsuji & Nagano [12] Gr_ = 8.44E10
——0—— Tsuji & Nagano [12] Gr, = 3.62E10
———0——  Tsuji & Nagano [12] Gr,_ = 1.55E10
1 =
o] -1| lllluJJOLlllJLlJ’1 1 llullllzjllllllla
10 10 10 10 y" 10

FiG. 1. The correlation of the temperature profile in the turbulent natural convection boundary layer along
vertical plates.

f* v . R Pry =0 (29) WA = y* R (32)
where PEE = R (33
ut = u _ (30) When c¢=1, and d= —1. then w**=u",
ly y*¥* = Prp* and equation (31) becomes:
The following equation is expected to correlate vel- ut = f(y". Pr) (34)

ocity profile well:

in which the velocity wall function for forced con-

“ S Pr) Gh vection is contained.
where For natural convection of air, ¢ and d can be deter-
5
T*
4 -
3 -
| ©  Tsuji and Nagano [12]
.......... Equan()n (22)
ok — Equation (23)
-+=-- Equation (24)
I +  Cheesewright and Mirzai [9]
e Cheesewright [3]
1 +  Miyamoto et. al. [13]
L o5
P
0 T S U | e s il e e
1077 100 101 102 v 103

F1G. 2. The temperature wall function of turbulent natural convection along vertical plates.
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mined based on the experimental data of Tsuji and
Nagano [12]. Figure 3(a) shows that u* = f(y™*) can-
not correlate the experimental data. When we choose
¢ = 4, the maximum of «** is independent of Gr, as
shown in Fig. 3(b), which is the essential condition to
correlate the velocity profile. Then we get a dimension-
less velocity parameter:

3
= ujff. (35)
_—
——
12 —_—a
+ —_—
u o}

Tsuji & Nagano [12] Gr, = 3.62E10
Tsuji & Nagano [12] Gr, = 1.55E10
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Now we have to determine the value of d, but whatever
the dvalue chosen, u** = f(y**) can still not correlate
the experimental data well in the whole boundary
layer. We have to divide the boundary layer into inner
and outer sublayers as George and Capp [8], Tsuji
and Nagano [6], and Henkes [7] did. The inner one is
the region from the wall to the maximum velocity
position, and the outer one is the rest region of the
boundary layer. Figure 4 shows that u** = f(p**)
correlates the experimental data well when d = 2 for

Tsuji & Nagano [12] Gr, = 1.80E11
Tsuji & Nagano [12] Gr, = 8.44E10

i i 2a 2 axpal NS W R T T

(a)

0 P A TS | it AL

104

100 101 102 108
y
0.3 ——@—  Tsuji & Nagano [12] Gr_ = 1.80E11 I
——e—  Tsuji & Nagano [12] Gr, = 8.44E10
. —&—  Tsuji & Nagano [12] Gr, = 3.62E10
uR'L ——0—  Tsuji & Nagano [12] Gr, = 1.55E10
(b) 0.0 Lt g aanl MUY T | TN
100 107 102 102 y* 104

FiG. 3. The experimental data of turbulent natural convection boundary layer along vertical plates. (a)
The experimental data in the form of u* = f(¥*). (b) The experimental data in the form of u** =f(yh).
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mmmef—e  Tsuji & Nagano [12} Gr, = 1.80E11
—a—— Tsuji & Nagano [12] Gr_ = 8.44E10

03 ~—0— Tsuji & Nagano [12) Gr_= 3.62E10
we—@—~— Tsuji & Nagano {12] Gr, = 1.55E10
>
u | .
«<—— inner layer outer layer —»
b
0.2 F
0.1
(a) . i 1
00 i PSS NT P W S S T i PR NS ETS ] At i Addd
102 101 100 107 y*Rz 102

~——f—— Tsuji & Nagano [12] Gr, = 1.80E11
0.3 ——— v  Tsuji & Nagano [12] Gr, = 8.44E10 e
8= Tsuji & Nagano [12] Gr, = 3.62E10
—-~0—  Tsuji & Nagano [12] Gr, = 1.55E10
o

0.1

(b) 0.0 PR ETIPTE | PR | PSR | edod 4 Nt
1075 104 1073 1072 y'R® 10°!

F1G. 4. The correlation of the velocity profile in the turbulent natural convection boundary layer along
vertical plates. (a) The correlation of the velocity profile in the inner sublayer. (b) The correlation of the
velocity profile in the outer sublayer.

the inner sublayer and when d =6 for the outer f = L41p** — 3 11p** 4 2,38y+*!

sublayer. EE < 0.53
By means of curve-fitting, as shown in Fig. 5, we o
obtain velocity wall function as follows ; Ji=0228 y**>053

W =min (£ ;) (36) fo=0.228 1F* <0.005
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©  Tsuji and Nagano [12]
~—— Equation (37)
wrwme Equation (38)

0.3
8  Cheesewright and Mirzai {9)
- * Cheesewright [3]
u *  Miyamoto et al. [13]
02}
80
0.1 -
a ¥
Yo
5 9
KRN
nbo
Ag‘o
(a) 0.0 MEPTPRTTTY BRI S ST T BRI T T o WO
10°3 1072 1077 100 10l ot 102
i
© Tsuji and Nagano [12]
03 ——— Equation (39) ‘
: Equation (40)
¥ *  Cheesewright and Mirzai [9]
u ® Cheesewright {3]

i +  Miyamoto et al. [13]

(b) 1075 1074 10-3 1072 1071 g** 100
o

F1G. 5. The velocity wall function of turbulent natural convection along vertical plates. (a) The velocity
wall function in the inner sublayer. (b) The velocity wail function in the outer sublayer.

fo= —0.458—0.2581n yF* - 0.02425In? yi* where y¥* and p¥* are the dimensionless distance for
inner and outer sublayers, respectively, which are
0.005 < p¥F* < 0.1 (40) defined as:

(42)

Il
|

*
*
e
<
E =L

fo=0 3E*>0.1 (1) i

o
=
A
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yEE = 43)
2

Let us comparc equation (37) with the analytcal
velocity profile deduced by Plumb and Kennedy [14]
and Tsuji and Nagano [12]:

Tw l (//f(T\\ - TU) 2 ! .(//ﬂ/\\ 2
U= v— Vot v

o2 v : 3 sy

L]t /e R
I Y
+ v |:4Y < oyt )‘ .,(,'l - ] (44)

If the higher-order terms can be neglected, equation
(44) can be rewritten as:

¥t = A_1'|**+B}',**:+C1}**} (45)
wherc:

A=pr' (46)

1 g (T, T,
B:_’).L//fx( W},, () (47)

2 Vi,
1wl

= T 48
¢ 6 Pru; (48)

According to equation (27) and the following relation-
ship:

T
oo L =0.684Gr 0 (49)
plgB(T, — Tyl '
proposed by Tsuji and Nagano [12], we have:
1
B= s oniipee (59)
0.684Gr """’
S 5

6x0.11"" (31)
For air, A =141, B= =311, and C=10.3437

Gr! "' Figure 6 shows the curves of equation

X. Yuan et al.

(45) with different values of C (corresponding
to different magnitudes of Gr,). from which it can
be seen that the last term in the right hand side of
cquation (45) seems to be negligible in the region of
1¥* < 0.1. Since both 4 and B ar¢ independent
of Gr,. thercfore «** and y¥* are indecd the proper
dimensionless parameters to correlate the velocity
profile in the ncar wall region.

For v** > 0.1, ** is sensitive to the value of Cin
equation (45). When Gr, = 10", ("= 2.38, equation
(45) is identical to equation (37). This does not mcan
that cquation (37) is only valid in Gr, = 10"". Equa-
tion (37) is a fitted curve based on the experimental
data, and hence, it is valid in the same region as the
cxperimental data.

3. DISCUSSION AND CONCLUSION

A comparison of the dimensionless parameters and
wall functions between natural and forced convection,
Table 1, shows the analogy between natural and for-
ced convection. The boundary layer in forced con-
veetion is a constant stress layer where u, (known as
friction velocity), T. = ¢../pC,u, (known as friction
temperature), and v/u, arc the proper velocity. tem-
perature, and length scales. respectively, while the
inner sublayer in turbulent natural convection is a
constant heat flux Jayer where 7T, (called heat flux
temperature). u, = (1,/p) /gPaT, (called heat flux
velocity), and a/u, should be the proper tempcerature,
velocity, and length scales, respectively. Therefore y*,
7*, and &** are the suitable dimensionless parameters
to correlate the temperature and velocity profiles in
natural convection as y*, #*, and T in forced con-
vection.

C =7.59 for Gr, = 1.0E16
C=4.25 for Gr, = 1.0E13

C=2.38 for Gr = 1.0E10
C=1.33 for Gr_ = 1.0E7

0.3
. C=00
u 1 Tsuji and Nagano [12]
02
01}
° o

00 pxaa szl 2z 2 aazsal a2z sl a2 gazal 2o X 2 aii1l

1073 1072 1071 100 10! v 102

F1G. 6. The curves of equation (45) with 4 = 1.4l and B = —3.11
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Table 1. The analogy of the dimensionless parameters between natural and forced convection
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Forced convection

Natural convection

It can be seen from the scales of temperature and
velocity that 7, isindependent of 7,,, while ug is depen-
dent both on 7, and g¢,,. So, the correlation of tem-
perature data is independent of the wall shear stress
and the correlation of velocity data is dependent both
on the wall shear stress and the wall heat flux, which
is consistent with the opinion of Cheesewright and
Mirzai [9]. It is interesting to compare the correlation
in forced convection where velocity data are inde-
pendent of the wall heat flux, while temperature data
are dependent both on the wall shear stress and the
wall heat flux.

Because only fluid properties and local parameters
are included, without the ambient temperature, the
proposed wall functions are expected to be valid in
non-isothermal environments or flows in cavities and
not only on vertical flat plates. They are suitable for
numerical simulation since they do not contain
additional parameters such as maximum velocity and
boundary thickness which cannot be obtained accu-
ratcly during the calculation unless a very fine grid
system is applied.
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